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Abstract

Purpose – The purpose of this paper is to investigate the performance of a specific class of
high-resolution central schemes in conjunction with the black oil models for hydrocarbon reservoir
simulation.

Design/methodology/approach – A generalized black oil model is adopted, in which the solubility
of gas in both oil and water and evaporation of oil are considered, leading to a system of equations
prone to degeneracy. A computer code is generated and three test cases are solved to evaluate the
performance of various schemes in terms of accuracy and discontinuity handling.

Findings – It is shown that, although some of the central schemes are highly sensitive to the choice of
Courant-Friedrich-Levy (CFL) number and produce overly diffusive results, a certain type of this class
is insensitive to the CFL number and can conveniently handle degenerate equations appearing in the
reservoir simulation. The obtained results are compared with those available in the literature, showing
merits of this class of schemes in complex reservoir simulation models.

Research limitations/implications – This paper gives the one-dimensional implementation of the
above-mentioned schemes. Extension to higher dimensional black oil model is currently under
development by the authors.

Practical implications – The specific class of high-resolution central schemes investigated here
presents the same level of accuracy as more complicated numerical methods, yet keeping it much more
simple, by avoiding Riemann solvers.

Originality/value – The high-resolution central scheme used in this work has been newly developed
and applied to simple scalar hyperbolic equations. It has been adopted for the black oil for the first
time.
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Introduction
Enhancing oil production has been one of the main concerns of reservoir engineers
throughout the history of petroleum industry. With the advent of high speed computing,
reservoir simulation has proven to be an invaluable tool to this end. Based on
half-a-century of research, various flow models for reservoir simulation are in use today.
These models range from simple single-phase (Aronofsky and Jenkins, 1954) to
sophisticated multi-phase and multi-component compositional models (Class et al., 2002).

Black oil is one of the most popular models among reservoir engineers. This is
mainly because the model provides a reasonably general representation of the
multi-component multi-phase flow in porous media while avoiding the necessity of
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using complicated phase equilibrium models. In practice, to simulate different
reservoir exploitation scenarios, the black oil model must be coupled with some
auxiliary sub-models for the fluid, rock and energy transfer.

Owing to the tendency towards more complex flow models and their corresponding
sub-models, there is an ever increasing demand for more computational power.
Besides, to accurately represent small features of size of tens of centimeters in a
reservoir of dimensions of several hundred of kilometers, tens of millions of grid cells
are normally required. The need for more complex models and more resolution, can
push the computer resources to the limit and thus show the need for computationally
efficient methods. Moreover, they highlight the importance of the quest for more
accurate computational methods.

Using a black oil model for reservoir simulation results in a system of degenerate,
non-convex hyperbolic equations for component transport. The degeneracy comes
from the fact that in some situations, although all of the chemical species are present,
riot all of the expected phases coexist. This situation is termed as under saturation.
Depending on the model used, one or several cases of under saturation may be present
in the problem. Solution of such a system of equations which constantly switches
between different degenerate cases is a challenging problem. Compared to the
overwhelming amount of research and developed methods for the solution of strictly
hyperbolic equations, e.g. the Euler equations in the fluid dynamics, little work is done
in the field of degenerate equations, occurring in reservoir simulation.

In the reservoir simulation context, methods based on the Godunov or approximate
Riemann solution are popular because of their robustness in capturing discontinuities.
Based on the work of Godunov (1959), this class of methods, assume a piecewise
constant or linear reconstruction of the solution variable and solve a local Riemann
problem for every discontinuity, to advance the solution. In the context of hydrocarbon
reservoir simulation, Bell et al. (1986a) and Colella (1990) have discussed second-order
Godunov methods for use in reservoir simulation. In a later work, Bell et al. (1986b)
considered the effect of gravitational force on the solution of Riemann problem for
the second-order Godunov methods applied to the black oil model. On the other hand,
several flux corrected transport methods have been used for restricted cases of
incompressible miscible flows by Boris and Book (1973), Christie and Bond (1985) and
Zalesak (1979).

However, the computational cost of these methods is high due to the need for full
characteristic decomposition of the Jacobian matrix and eigen vector calculations. In
addition, many cases of eigen value deficiency arise in complex reservoir models, due
to the degeneracy of the equations which require special care, both in analysis and
implementation.

On the other side of the numerical method’s spectrum, central schemes with added
artificial diffusion have long been used in compressible flow simulations. The work of
Friedrichs and Lax (1971) was the starting point of the central schemes. Their method
is based on a piecewise constant approximation of the solution. Compared to the
first-order Godunov method, however, it does not require eigen value and eigenvector
decomposition. The use of central schemes have been abandoned for a long time due to
their excessive numerical diffusion. Nevertheless, their relative simplicity, ease of
implementation and computational efficiency, motivated researchers to develop
high-resolution central schemes with artificial diffusion.
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Nessyahu and Tadmor (1990) have recently introduced a second-order successor to
the Lax-Friedrichs scheme which retains its main advantage of not needing an either
exact or approximate Riemann solver. Their extension was based on a staggered
grid. The method was extended to higher-orders by Liu and Tadmor (1998)
and Huynh (1995) and to higher dimensions by Arminijon et al. (1995) and Jiang and
Tadmor (1998). Also, Jiang et al. (1998) have introduced a non-staggered grid version of
this method.

All the above mentioned schemes have an artificial viscosity of order OðDx 2r=DtÞ
where r is the order of the scheme. Hence, with small time-steps, the numerical
diffusion becomes progressively high. To remedy this deficiency, several schemes
have been introduced. Kurganov and Tadmor (2000) introduced a modification to the
Nessyahu-Tadmor scheme, making its numerical diffusion of order OðDx 2r21Þ.
In particular, their semi-discrete form is capable of handling degenerate conservation
laws, which makes the method attractive to the reservoir simulations.

Other types of high-resolution central schemes also exist. Two of the most popular
are the convective-upwind split-pressure scheme due to Jameson (1995a, b) and the
scheme of Liu and Osher (1998), both of them being semi-discrete and achieving high
resolution without using a Riemann solver.

In simulating a problem with a complex physics on a general domain with large
variations in physical properties and grid size, the maximum allowable time-step size
for each cell to reach a stable solution varies considerably. Setting the global time-step
to the minimum of all cells makes the Courant-Friedrich-Levy (CFL) number for larger
cells, smaller than the optimum value and the artificial diffusion becomes higher than
expected. As a result, to ensure a good discontinuity capturing, a scheme should have
an artificial diffusion independent of the CFL number. This property of the
computational scheme is by no means trivial, and as will be shown in this work,
schemes which do not possess this property, are not suitable for reservoir simulations,
failing to capture the sharp fronts present in the solution.

In this work, the applicability of Nessyahu-Tadmor and Kurganov-Tadmor
high-resolution central schemes to the black oil model is investigated. Also, a
comparison with the traditional first-order Lax-Friedrichs scheme is performed. In the
following, first a brief review of the governing equations of the black oil model is given
and then important aspects of the numerical method are described. Finally, three
one-dimensional benchmark problems are solved and some concluding remarks are
presented.

Governing equations
Equations governing the black oil model can be formulated in several forms. The form
chosen for the present work is based on the work of Trangenstein and Bell (1989),
which uses a volume error discrepancy for derivation of the pressure equation. For the
sake of brevity, the details of the assumptions and derivation process are not discussed
here and only a brief review of the equations is presented.

In the black oil model, the reservoir fluid is considered to be composed of three
pseudo-components, which are oil, gas and water, distributed into three phases, liquid,
vapor and aqua. Neglecting the capillary effects, all phases will have the same
pressure, p. The mass of components per pore volume is represented by the vector
z ¼ {zo; zg; zw}T and the volume of each phase by u ¼ {ul ; uv; ua}T .
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The pressure variation inside the reservoir is governed by the a parabolic equation:

2feT ›u

›p
þ eTu

›f

›p

� �
›p

›t
þ eTu

›u

›z
7 · ðRB21vtÞ ¼

eTu2 1

Dt
f ð1Þ

The vector of velocities is defined as:

v ¼

vTl

vTv

vTa

8>><
>>:

9>>=
>>;

in which:

vj ¼ 2ljð7p2 rjgÞ

are the phase velocities and vt ¼ vTe is the total velocity. Moreover, e ¼ {1; 1; 1}T ,
f is the porosity, rj is density of phase j, g is the gravitational acceleration vector and t
is time. Also, lj ¼ Kkrj=mj is the mobility of phase j where K is the rock permeability,
and krj and mj are the relative permeability and dynamic viscosity of phase j,
respectively.

The matrix B ¼ diag{Bl ;Bv;Ba}, is the volume formation factor which shows the
volume of each phase in reservoir condition compared to the Stock Tank Condition
(STC). In the absence of thermal effects, Bl, Bv and Ba are functions of the phase
pressure.

The matrix R is the solution ratio. Rij is defined as the amount of component i in
phase j, compared to the amount of principal component of phase j. The principal
component of a phase is, by definition, the component present in that phase at STC.
Specifically, oil, gas and water are the principal components of the liquid, vapor and
aqua phases, respectively.

In the classical black oil model, only the solubility of gas in oil is considered, giving
the R matrix the following structure:

R ¼

1 0 0

Rl 1 0

0 0 1

2
664

3
775 Rl ¼

zgl
zol

ð2Þ

where zij is the mass of component i in phase j per pore volume. The model considered
by Trangenstein and Bell (1989) is rather more general and considers the solubility of
gas in both oil and water and evaporation of oil, with the following R matrix:

R ¼

1 Rv 0

Rl 1 Ra

0 0 1

2
664

3
775 Rl ¼

zgl
zol

Rv ¼
zov

zgv
Ra ¼

zga

zwa
ð3Þ

In this work, the general model of Trangenstien and Bell is adopted. The transport of
components is governed by the mass conservation law which yields:
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›fz

›t
þ 7 · ðRB21vÞ ¼ 0 ð4Þ

Here, u and z are related together by:

u ¼ BTz ð5Þ

where T is a matrix such that TR ¼ I.
When all the three phases are present, the flow is termed saturated. However, there

is a possibility that all the gas is dissolved into the liquid phase, thus, eliminating the
vapor phase. This situation is called under-saturation which shows that the reservoir
pressure is higher than the liquid bubble pressure and the liquid phase has the capacity
to swallow more gas. In this case, R, T and B matrices need to be modified but the
general form of equations (1), (4) and (5) does not alter. This is the main reason for
choosing this formulation as the base of present work, since it permits a unified
treatment of the saturated and under-saturated cases. For a detailed discussion of the
under-saturated cases, consult Trangenstein and Bell (1989).

Numerical method
A finite volume approach was chosen for the discretization of equations (1) and (4). For
a domain of length L, the one-dimensional grid is defined by:

xi ¼ ði2 1ÞDx i ¼ 1; 2; . . . ; n Dx ¼
L

n2 1
ð6Þ

The control volume corresponding to node i is the space enclosed by faces i-1/2 and
i þ 1/2. Integrating equation (1) on control volume i gives:ðð

a
›p

›t
dxdt þ

ðð
eTBT

›

›x
ðRB21vÞ dxdt ¼

ðð
b dxdt ð7Þ

where:

a ¼ 2feT ›u

›p
þ eTu

›f

›p
b ¼

eTu2 1

Dt
f

Assuming that p is constant over the control volume, RB -1in the second term comes
out of the derivative simplifying equation (7) to the following equation:

ai p
nþ1
i 2 pni

� �
Dxþ Dt vnþ1

t iþ1=2 2 vnþ1
t i21=2

h i
¼ biDxDt ð8Þ

The coefficients a and b are evaluated at time tn while the total velocities are evaluated
at time tnþ1 making the pressure equation implicit. The vector notation for the total
velocity is not used, since the equation is written for a one-dimensional model.

For the component transport, integration over the control volume using an explicit
time approximation gives:

znþ1
i 2 zni ¼ 2

Dt

fiDx
hiþ1=2 2 hi21=2

� �
ð9Þ
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where hiþ1=2 is the flux vector RB -1v evaluated over the face i þ 1/2. It can be written
as a function of the conserved variables on the two sides of the face. Below three
variants of the central scheme family are presented.

Lax-Friedrichs scheme
The first-order Lax-Friedrichs scheme has an artificial diffusion of order OðDx 2=DtÞ.
The numerical flux is written as:

hiþ1=2 ¼
1

2
hiþ1 þ hi

� �
2

1

4t
ziþ1 2 zi
� �

ð10Þ

in which t ¼ Dt=Dx and h i ¼ hðziÞ.

Nessyahu-Tadmor scheme
The scheme presented by Nessyahu and Tadmor (1990) is a second-order accurate
method which uses staggered grid. Here, the non-staggered version introduced by
Jiang et al. (1998) is employed. The artificial diffusion of this method is of OðDx 4=DtÞ.
The flux function is given by:

h iþ1=2 ¼
1

2
h
nþ1=2
iþ1 þ h

nþ1=2
i

h i
2

1

4t
ðziþ1 2 ziÞ þ

Dx

16t
z0 iþ1 þ z0 i
� �

þ
Dx

8t
z0 iþ1=2 ð11Þ

where:

z0 i ¼ MM
ziþ1 2 zi

Dx
;
zi 2 zi21

Dx

� �
z0 iþ1=2 ¼ MM

Dznþ1
iþ1

Dx
;
Dznþ1

i

Dx

 !
ð12Þ

and:

Dznþ1
i ¼

zniþ1 2 zni21

2
2

Dx

8
z0 i21 2 2z0 i þ z0 iþ1

� �
2 t h

nþ1=2
i21 2 2h

nþ1=2
i þ h

nþ1=2
iþ1

h i
The term h

nþ1=2
i is evaluated at:

z
nþ1=2
i ¼ hn

i 2
t

2

›h

›x
Dt

MM(x,y) is the minmod limiter and is defined as:

MM ðx; yÞ ¼

minðx; yÞ x . 0 and y . 0

maxðx; yÞ x , 0 and y , 0

0 xy , 0

8>><
>>: ð13Þ

It should be noted that in the above equations, z0 i and z0 i^1=2 are evaluated at t n

and t n þ l, respectively.

Kurganov-Tadmor scheme
Kurganov and Tadmor (2000) has formulated his method in both semi- and
fully-discrete forms. Here, the semi-discrete form is used since it is already in the
conservation form. Nevertheless, the same expression for face flux can be reached from
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the fully-discrete form with some algebraic manipulations. This method has an
artificial diffusion of order OðDx 3Þ. The numerical flux is given by:

hiþ1=2 ¼
1

2
hþ
iþ1=2 þ h2

iþ1=2

h i
2

1

2
aiþ1=2 zþiþ1=2 2 z2iþ1=2

� �
ð14Þ

in which:

zþiþ1=2 ¼ ziþ1 2
Dx

2
z0 iþ1 z2iþ1=2 ¼ zi þ

Dx

2
z0 i

are the right and left states, respectively, and h^
iþ1=2 ¼ hðz^iþ1=2Þ: The variable

derivatives are evaluated using the same minmod limiter. The wave speed at cells’
interface, aiþ1/2 is defined as:

r
›h

›z
ðzÞ

� �
z [ C z2iþ1=2; z

þ
iþ1=2

� �
where r(A) is the spectral radius of matrix A and Cðz2iþ1=2; z

þ
iþ1=2Þ is a path that

connects the two states z2iþ1=2 and zþ
iþ1=2 in the phase space via Ricmann fans.

Since, the flux function is non-convex and complicated to evaluate, it is not easy to
find aiþ1/2 accurately. In the present work, the following estimate is used:

aiþ1=2 ¼ r
›h

›z
ð�zÞ

� �
ð15Þ

in which �z is the arithmetic mean of z21þ1=2 and zþ1þ1=2. Numerical experiments proved
that this is sufficiently close to the true maximum wave speed.

The CFL condition for the three schemes is computed on the basis of a and a global
CFL number, C, at each face, using:

aDt

Dx
, C ð16Þ

In practice, a global time-step size is used which is the minimum allowable time-step
computed for all computational cells.

Tests, results and discussion
To assess the performance of the above mentioned numerical methods, three test cases
were solved. The results for each test case consist of the solution of the problem by
three methods, Lax-Friedrichs, Nessyahu-Tadmor and Kurganov-Tadmor, abbreviated
by LF, NT and KT, respectively.

The first benchmark is the so-called two-phase Buckley-Leverett problem which is
widely used in the field of reservoir engineering. The second and third benchmarks
were adapted from Trangenstein and Bell (1989). Since, a higher-order Godunov
scheme was used in Trangenstein and Bell (1989), the solutions in the current work
will also be illuminating, in comparing the results obtained from central and Godunov
schemes. In order to compare the results of test case 2 and 3, the fluid and rock
properties are taken as those given in Trangenstein and Bell (1989), which are given in
the Appendix.
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The first problem, as stated, is a two-phase water flooding problem. Although the
problem is two-phase and can be solved by defining a scalar flux, this was not done
here and the full black oil model was used instead, with the gas component set to zero.
Though the physics is simplified, the numerical complexities of the black oil model still
exist. The initial reservoir and injection compositions are:

zres ¼

1:0

0:0

0:0

8>><
>>:

9>>=
>>; zinj ¼

0:0

0:0

1:0

8>><
>>:

9>>=
>>; ð17Þ

A constant pressure p ¼ 0 and total velocity vt ¼ 0.1 were applied to the domain
0 # x # 1. This situation, essentially circumvents the solution of the pressure
equation and tests the performance of different flux estimation methods in the
component transport equation.

In this test case, the expected profile is the Buckley-Leverett solution. In this test
case a mobility ratio equal to 1 was used so the front tip should be at Sw ¼ 0.7. The
problem was solved for CFL number equal to 0.4, 0.1 and 0.02. The results are given for
three different times. The LF scheme (Figure 1) has a large artificial diffusion, even at
large CFL numbers, but at shape of the solution is correct. This was expected in
advance since the method is only first-order accurate. As the CFL number is reduced,
however, the situation worsens arid the increasingly higher numerical diffusion
completely wipes out the shock front at CFL ¼ 0.02.

The NT scheme (Figure 2) provides a much better resolution for the shock front at
CFL ¼ 0.4 since it is second-order accurate. But the solution quality degrades as the
CFL number is reduced, which is an indication of the inverse proportionality of the
numerical diffusion and the time-step size on a fixed sized grid.

The KT scheme (Figure 3) gives virtually the same result regardless of the CFL
number, which indicates its independency of the time-step size variation.

Figure 4 shows the progress of the front for the three schemes. At CFL ¼ 0.4 the
KT scheme shows a marginally smaller diffusion compared to NT scheme, which is
due to its smaller constant coefficient in the numerical diffusion term. For NT, this
coefficient is 1.0 while for KT it is Dt=Dx.

The second test case involves injection of a saturated mixture into a saturated black
oil reservoir. The initial reservoir pressure is 1,800 psi and injection and production
takes place at 2,000 and 1,600 psi, respectively. This test case signifies the effect of
composition variation on the flow. The domain is defined as 0 # x # 1000 and the
initial reservoir and injection compositions are:

zres ¼

0:703

70:3

0:0502

8>><
>>:

9>>=
>>; zinj ¼

0:0414

66:23

0:497

8>><
>>:

9>>=
>>; ð18Þ

For this test case, no analytical solution exits. Trangenstein and Bell (1989) have
shown that the solution consists of two wave fronts, one slow-running between the
oil and water components and one fast-running between the gas and oil components.
The problem was solved on a 200-node grid and with a CFL equal to 0.45 and 0.1.
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Figure 1.
Test case 1: water
saturation profiles
obtained by the LF scheme
at various times
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Figure 2.
Test case 1: water
saturation profiles

obtained by the NT
scheme at various times
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Figure 3.
Test case 1: water
saturation profiles
obtained by the KT
scheme at various times
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Figure 4.
Progress of the three

schemes through time,
compared to each other
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The results obtained by LF method is too diffuse (Figure 5). Although the CFL number
was set to the maximum permissible value, the front is smeared. At reduced CFL
number the front totally vanishes.

The NT scheme performs well at high CFL numbers (Figure 6) even though the
fronts are not as sharp as the ones with KT scheme (Figure 7). The quality of its front

Figure 6.
Test case 2: saturation
profiles obtained by
the NT scheme,
Time ¼ 150 days
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Test case 2: saturation
profiles obtained by the LF
scheme, Time ¼ 150 days
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degrades rapidly as the CFL number is reduced. By contrast, the results obtained from
the KT scheme at different CFL numbers, coincide on each other, which is remarkable,
compared to the other two methods.

The third test case is the water flooding of an under-saturated oil reservoir. The
initial reservoir, injection and production pressures are 3,500 psi, 4,000 psi and 3,000
psi, respectively. This test case shows the effect of pressure variation on the flow and
composition. The domain is the same as test case two and the initial reservoir and
injection compositions are:

zres ¼

0:646

116:29

0:0

8>><
>>:

9>>=
>>; zinj ¼

0:0

0:0

1:27

8>><
>>:

9>>=
>>; ð19Þ

Like the previous test case, there is no analytical solution for the third test case. As
expected, the solution exhibits a front between water and oil which starts from the
injection well and progresses towards the production well. As the reservoir pressure
drops, near the production well, the flow becomes saturated and free gas is produced,
which introduces another front. Figures 8-10 show the results for a grid with 200 points
and with CFL equal to 0.45 and 0.1. The figures compare the performance of the three
methods which show the same trend as the previous two cases.

As it is shown in the obtained results, the classical Lax-Friedrichs scheme must be
excluded from the selection set, because it is first-order accurate with an unacceptably
high amount of artificial diffusion. The Nessyahu-Tadmor scheme has better
performance in terms of artificial diffusion, since it is of second-order accuracy.
However, its advantage is limited to high CFL numbers. As the CFL number decreases,
the numerical diffusion starts to grow, diminishing the accuracy of the solution. On the

Figure 7.
Test case 2: saturation
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contrary, the Kurganov-Tadmor does not exhibit this flaw, being robust and accurate
at any CFL number. Based on the facts mentioned in the introduction section and the
results obtained here, it is seen that the KT scheme can be a favorable scheme for black
oil simulations.

Figure 8.
Test case 3: saturation
profiles obtained by the LF
scheme, Time ¼ 125 days
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Figure 9.
Test case 3: saturation
profiles obtained by
the NT scheme,
Time ¼ 125 days
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Conclusion
In this work, the possibility of application of high-resolution central schemes to the
black oil model was investigated. The obtained results showed that methods whose
artificial diffusion were independent of the time-step size offered a far superior
resolution for complex simulations, especially in cases where a reduction of CFL
number was necessary due to practical reasons. As an example, it was shown that the
second-order NT method suffers from an excessive numerical diffusion at lower CFL
numbers. Specifically, from the three methods investigated here, only the one proposed
by Kurganov and Tadmor showed promising results for the black oil model. The
method retains its accuracy, exhibits CFL independency and shows good capability in
handling degenerate equations.
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Appendix. Properties of rock and fluids
The spatial coordinate x has units of feet, and time t is measured in days. Pressure p is measured
in psi, viscosity is measured in centipoise and the rock permeability K is measured in 0.006328
times the value in millidarcies. In this work, K ¼ 100md and porosity f ¼ 0:2ð1 þ 1025pÞ.
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The relative permeability functions are:

krl ¼ ð1 2 sv 2 saÞð1 2 svÞð1 2 saÞ krv ¼ s2
v kra ¼ s2

a

The solution ratios are given as:

Rlð pÞ ¼ 0:05p Rvð pÞ ¼ 9 £ 1025 2 6 £ 1028pþ 1:6211p 2 Rað pÞ ¼ 0:005p

Viscosities are defined by:

ml ¼
0:8 2 1024p saturated liquid

ð0:8 2 1024pbÞð1 þ 6:78 £ 1025ð p2 pbÞÞ undersaturated liquid

(

mv ¼ 0:012 þ 3 £ 1025p

ma ¼
0:35 saturated aqua

0:35ð1 þ 6:78 £ 1025ð p2 pbÞÞ undersaturated aqua

(

and finally, the volume formation factors are

Bl ¼

1:0 2 2:31 £ 1025p if Rlð pÞ ; 0

1:0 þ 1:5 £ 1024p saturated liquid

1:0 þ 1:5 £ 1024pb
1:0 þ 2:31 £ 1025ð p2 pbÞ

undersaturated liquid

8>>>><
>>>>:

Bv ¼

1

6:0 þ 0:06p
saturated vapor

1

7:0 þ 0:06p
þ

�Rv

Rv

1

6:0 þ 0:06p
2

1

7:0 þ 0:06p

	 

undersaturated vapor

8>>>><
>>>>:

Ba ¼

1:0 2 1:8 £ 1025p if Rað pÞ ; 0

1:0 2 3 £ 1026p saturated aqua

1:0 2 3 £ 1026pb
1:0 þ 1:8 £ 1025ð p2 pbÞ

undersaturated aqua

8>>>><
>>>>:

ð20Þ
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